a2 United States Patent

Sahita et al.

US009158942B2

US 9,158,942 B2
Oct. 13, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

SECURING DISPLAY OUTPUT DATA
AGAINST MALICIOUS SOFTWARE ATTACKS

Applicants:Ravi L. Sahita, Portland, OR (US);
Vinay Phegade, Beaverton, OR (US);
David J. Cowperthwaite, Portland, OR
(US)

Inventors: Ravi L. Sahita, Portland, OR (US);

Vinay Phegade, Beaverton, OR (US);

David J. Cowperthwaite, Portland, OR

(US)

Assignee: INTEL CORPORATION, Santa Clara,

CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 217 days.

Appl. No.: 13/763,914

Filed: Feb. 11, 2013

Prior Publication Data

US 2014/0230067 A1 Aug. 14,2014

Int. CL.

GO6F 21/84

GO6F 21/60

GO6T 1/60

U.S. CL

CPC . GO6F 21/84 (2013.01); GO6T 1/60 (2013.01);
GO6F 21/60 (2013.01)

Field of Classification Search

None

See application file for complete search history.

(2013.01)
(2013.01)
(2006.01)

100

(56) References Cited
U.S. PATENT DOCUMENTS
7,941,860 B2 5/2011 Poisner
7,958,320 B2 6/2011 Raikin et al.
8,122,496 B2 2/2012 Achari et al.
2005/0188198 Al 8/2005 FEllison et al.
2005/0283602 Al* 12/2005 Vembuetal. 713/150
2006/0136910 Al 6/2006 Brickell et al.
2007/0106986 Al 5/2007 Worley, Ir.
2009/0064312 Al 3/2009 Furuichi et al.
2011/0047376 Al 2/2011 Mittal
2012/0255017 Al 10/2012 Sallam
FOREIGN PATENT DOCUMENTS
EP 1920375 A2 5/2008
EP 2 107486 A2 10/2009
EP 2107 486 A3 5/2012
WO 2007/021513 A2 2/2007
WO 2007/021513 A3 4/2007
OTHER PUBLICATIONS

Extended European Search Report received for European Patent
Application No. 14154450.2, mailed on Apr. 9, 2014, 6 pages.
Intel,“Intel® Virtualization Technology and Intel® Active Manage-
ment Technology in Retail Infrastructure”, Enabling a Robust, Reli-
able and Manageable Retail Infrastructure Solutions at Low Total
Cost of Ownership (TCO), White Paper, Revision 1.0, Dec. 2006, pp.
1-21.

* cited by examiner

Primary Examiner — Alexander Lagor
(74) Attorney, Agent, or Firm — Lynch Law Patent Group,
P.C.

(57) ABSTRACT

Systems, apparatus and methods are described including
operations for securing display output data against malicious
software attacks.

26 Claims, 7 Drawing Sheets

WINDOWS
MANAGER
10

PROCESS ADDRESS SPACE
102

COMPOSED

PLACE HOLDER

ISOLATED |

GRAPHICS !

GRAPHICS DRIVER
120

GRAPHICS MEMORY
PACE 130

| TAccEss |

| CONTROLLED

I REGION

i

T
DISPLAY BUFFER DISPLAY BUFFER | | DISPLAY BUFFER |
12 i 106]
T) [SENSITIVE | |
| (s | |
APPLIGATION 1 Lo =1
PROGRAMMING
INTERFACES
(APIs)
114

I

| TRANSLATION !

1 TABLE M ol
)

1 MEMORY REGION 1

- |
| VIRTUAL SPRITE |
EVICE +H
)
|

1
! VIRTUAL SPRITE |

TRUSTED MEMORY SERVICE LAYER
140

DISPLAY DEVICE 170

DISPLAY OF
SENSITIVE DATA
180

U.S. Patent Oct. 13, 2015 Sheet 1 of 7 US 9,158,942 B2

100
WINDOWS PROCESS ADDRESS SPACE
MANAGER 102

110
COMPOSED PLACE HOLDER |! ISOLATED :
DISPLAY BUFFER DISPLAY BUFFER : DISPLAY BUFFER |
| [SENSITIVE | |
1| DATA 108 |
APPLICATION -y !
PROGRAMMING
INTERFACES
(APIs)
114

| GRAPHICS ! r '

| | | VIRTUAL SPRITE |

| TRANSLATION !

| | | 150 |

|

GRAPHICS DRIVER
120

GRAPHICS MEMORY

SPACE 130
________ | N R
: CO?\ICT(F:{%SLEED | : VIRTUAL SPRITE |
: MEMORY REGION
| REGION | | 160 |
| 132 | =2

TRUSTED MEMORY SERVICE LAYER
140

DISPLAY DEVICE 170

DISPLAY OF
SENSITIVE DATA
180

FIG. 1

U.S. Patent Oct. 13, 2015 Sheet 2 of 7 US 9,158,942 B2

200

REGISTER A PROCESS AS A PROTECTED PROCESS VIAATRUSTED
MEMORY SERVICE LAYER
202

y

MARK A PORTION OF A PROCESS ADDRESS SPACE AS AN ISOLATED
DISPLAY BUFFER AND ANOTHER PORTION OF THE PROCESS ADDRESS
SPACE AS A PLACE HOLDER BUFFER
204

4

MARK A PORTION OF A GRAPHICS MEMORY SPACE AS AN ACCESS
CONTROLLED GRAPHICS MEMORY REGION
206

y

PROVIDE A VIRTUAL SPRITE DEVICE AND AN ASSOCIATED VIRTUAL
SPRITE MEMORY REGION
208

y

INVOKE AN APPLICATION PROGRAMMING INTERFACE VIA A WINDOWS
MANAGER TO RECEIVE INFORMATION ASSOCIATED WITH THE PLACE
HOLDER BUFFER
210

y

TRANSFER THE SENSITIVE DATA IN THE ISOLATED DISPLAY BUFFER TO
THE VIRTUAL SPRITE DEVICE MEMORY REGION
212

Y

TRANSFER THE SENSITIVE DATA IN THE VIRTUAL SPRITE DEVICE
MEMORY REGION TO THE ACCESS CONTROLLED GRAPHICS MEMORY
REGION
214

Y

PROVIDE THE SENSITIVE DATAIN THE ACCESS CONTROLLED
GRAPHICS MEMORY REGION TO A DISPLAY DEVICE
216

FIG. 2

U.S. Patent

Oct. 13, 2015

o100

Sheet 3 of 7

US 9,158,942 B2

500 \/\/\

WINDOWS
MANAGER
10

MODULES 302

PROCESS
ADDRESS
SPACE
102

SPRITE
PIPELINE
310

TRANSFER
INFORMATION
ASSOCIATED

WITH PLACE

HOLDER BUFFER

v
312

W

314

VAN,
MARK ISOLATED 357~
DISPLAY BUFFER
AND PLACE
HOLDER BUFFER -

TRANSFER SENSITIVE |

v
322

A4 A

323"

316

FIG. 3

324
4—

325

REGISTER A
PROCESS AS A
PROTECTED
PROCESS

MARK ACCESS
CONTROLLED
GRAPHICS
MEMORY

PROVIDE
VIRTUAL SPRITE
DEVICE AND
MEMORY
REGION

TRANSFER
SENSITIVE DATA
TO VIRTUAL
SPRITE MEMORY
REGION

TRANSFER
SENSITIVE DATA
TO ACCESS
CONTROLLED

GRAPHICS
MEMORY

PROVIDE
SENSITIVE DATA
TO DISPLAY
DEVICE

326

U.S. Patent Oct. 13, 2015 Sheet 4 of 7 US 9,158,942 B2

400

LOAD ATRUSTED MEMORY SERVICE LAYER

N
N

Y

EXPOSE, VIATHE TRUSTED MEMORY SERVICE LAYER, AN UNVERIFIED
VIRTUAL SPRITE DEVICE

o~
Y

Y

LOAD AN UNVERIFIED VIRTUAL SPRITE DEVICE DRIVER ASSOCIATED
WITH THE UNVERIFIED VIRTUAL SPRITE DEVICE

o~
[0)]

Y

DETERMINE, VIATHE TRUSTED MEMORY SERVICE LAYER, WHETHER
THE UNVERIFIED VIRTUAL SPRITE DEVICE DRIVER IS INCLUDED ON A
PROVISIONED WHITELIST
408

Y

IF THE UNVERIFIED VIRTUAL SPRITE DEVICE DRIVER IS INCLUDED ON
THE PROVISIONED WHITELIST, REGISTER THE UNVERIFIED VIRTUAL
SPRITE DEVICE
410

FIG. 4

U.S. Patent Oct. 13,2015

Sheet S of 7

CENTRAL PROCESSING
UNIT(S)
506

WINDOWS MANAGER
110

OPERATING SYSTEM
520

APls
14

1 1
1 |
: 120 :
1 |

GRAPHICS
PROCESSING UNIT(S)
210

SPRITE ENGINE
512

| GRAPHICS DRIVER |
: 120 :
1]

SYSTEM
100

SPRITE PIPELINE
310

TRUSTED MEMORY
SERVICE LAYER
140

VIRTUAL SPRITE
DEVICE
150

VIRTUAL SPRITE
MEMORY REGION
160

MEMORY STORE(S)
508

PROCESS ADDRESS
SPACE
102

GRAPHICS MEMORY
SPACE
130

DISPLAY DEVICE
170

FIG. 5

US 9,158,942 B2

U.S. Patent Oct. 13, 2015 Sheet 6 of 7 US 9,158,942 B2

600 7 DISPLAY 620

7 650

USER INTERFACE 622
C()1)

< Platform 602 o A?nna
4 C¥Y

= Content Delivery
Device(s)
. 640
Memory Radio 618 Storage
612 614
Applications
Chipset 605 616
: Content
Graphics Services
Processor Subsystem Device(s)
610 615 630
N \/ /\\\\A\\
/—\\/ o)
/ Network)
/ 660 J
\ /

FIG. 6

U.S. Patent Oct. 13, 2015 Sheet 7 of 7 US 9,158,942 B2

700 1

708

| | 704

710

| 702

| | 706

FIG. 7

US 9,158,942 B2

1
SECURING DISPLAY OUTPUT DATA
AGAINST MALICIOUS SOFTWARE ATTACKS

BACKGROUND

In a variety of situations, such as online financial transac-
tions or the like, a computing device may need to present
information to a user in a non-tampered manner. In such
situations, malicious software (i.e., malware) such as kernel
mode kernel mode rootkits and/or user-mode rootkits can
inject code into a user application. The malicious code may
attach key loggers or read memory, such as displayer buffers,
and steal users credentials or other data.

In some existing implementations, a display buffer may be
protected using encryption (e.g., protected audio video path
(PAVP) encryption), hardware isolation, and/or a display pro-
tected via a virtual memory manager. However, such imple-
mentations may not be available on every platform and, in
general, they may be costly and/or difficult to implement.

In various computing implementations, it may be desirable
to protect user data and, in particular, sensitive user data (e.g.,
usernames and passwords, financial account information, or
the like) against mal ware attacks.

BRIEF DESCRIPTION OF THE DRAWINGS

The material described herein is illustrated by way of
example and not by way of limitation in the accompanying
figures. For simplicity and clarity of illustration, elements
illustrated in the figures are not necessarily drawn to scale.
For example, the dimensions of some elements may be exag-
gerated relative to other elements for clarity. Further, where
considered appropriate, reference labels have been repeated
among the figures to indicate corresponding or analogous
elements. In the figures:

FIG. 1 is an illustrative diagram of an example system for
securing display output data;

FIG. 2 is a flow chart illustrating an example process for
securing display output data;

FIG. 3 is an illustrative diagram of an example process for
securing display output data in operation;

FIG. 4 is a flow chart illustrating an example process for
preparing a system to secure display output data;

FIG. 5 is an illustrative diagram of an example system for
securing display output data;

FIG. 6 is an illustrative diagram of an example system; and

FIG. 7 is an illustrative diagram of an example system, all
arranged in accordance with at least some implementations of
the present disclosure.

DETAILED DESCRIPTION

One or more embodiments or implementations are now
described with reference to the enclosed figures. While spe-
cific configurations and arrangements are discussed, it should
be understood that this is done for illustrative purposes only.
Persons skilled in the relevant art will recognize that other
configurations and arrangements may be employed without
departing from the spirit and scope of the description. It will
be apparent to those skilled in the relevant art that techniques
and/or arrangements described herein may also be employed
in a variety of other systems and applications other than what
is described herein.

While the following description sets forth various imple-
mentations that may be manifested in architectures such sys-
tem-on-a-chip (SoC) architectures for example, implementa-
tion of the techniques and/or arrangements described herein

10

15

20

25

30

35

40

45

50

55

60

65

2

are not restricted to particular architectures and/or computing
systems and may be implemented by any architecture and/or
computing system for similar purposes. For instance, various
architectures employing, for example, multiple integrated cir-
cuit (IC) chips and/or packages, and/or various computing
devices and/or consumer electronic (CE) devices such as set
top boxes, smart phones, etc., may implement the techniques
and/or arrangements described herein. Further, while the fol-
lowing description may set forth numerous specific details
such as logic implementations, types and interrelationships of
system components, logic partitioning/integration choices,
etc., claimed subject matter may be practiced without such
specific details. In other instances, some material such as, for
example, control structures and full software instruction
sequences, may not be shown in detail in order not to obscure
the material disclosed herein.

The material disclosed herein may be implemented in
hardware, firmware, software, or any combination thereof.
The material disclosed herein may also be implemented as
instructions stored on a machine-readable medium, which
may be read and executed by one or more processors. A
machine-readable medium may include any medium and/or
mechanism for storing or transmitting information in a form
readable by a machine (e.g., a computing device). For
example, a machine-readable medium may include read only
memory (ROM); random access memory (RAM); magnetic
disk storage media; optical storage media; flash memory
devices; electrical, optical, acoustical or other forms of propa-
gated signals (e.g., carrier waves, infrared signals, digital
signals, etc.), and others.

References in the specification to “one implementation”,
“an implementation”, “an example implementation”, etc.,
indicate that the implementation described may include a
particular feature, structure, or characteristic, but every
implementation may not necessarily include the particular
feature, structure, or characteristic. Moreover, such phrases
are not necessarily referring to the same implementation.
Further, when a particular feature, structure, or characteristic
is described in connection with an implementation, it is sub-
mitted that it is within the knowledge of one skilled in the art
to effect such feature, structure, or characteristic in connec-
tion with other implementations whether or not explicitly
described herein.

Systems, apparatus, articles, and methods are described
below including operations for securing display output data
against malicious software attacks.

As described above, in various computing environments,
malware may inject code into a user application that may
attach key loggers or read memory, such as displayer buffers,
and steal users’ credentials or other data.

As described in greater detail below, user data such as, for
example, display buffer data (e.g., display data) may be pro-
tected against malware attacks. In general, a trusted memory
service layer (TMSL) in a computing platform may be a
virtual machine extension (VMX) root mode component and
may provide various services. For example, the TMSL may
provide physical memory views only accessible by
whitelisted software (i.e., software known to be validated and
trusted). Such physical memory views may be used to secure
data into memory inaccessible to non-whitelisted software. In
the context of protecting a display buffer from malware, for
example, an isolated display buffer may be generated or
marked, which may only be accessed by whitelisted or trusted
software or code. The TMSL may similarly provide a portion
of'a graphics memory space (i.e., an access controlled graph-
ics memory region) that may only be accessed by whitelisted
or trusted software or code.

US 9,158,942 B2

3

Further, the TMSL may be capable of generating or emu-
lating a device such as, for example, a peripheral component
interconnect (PCI) or peripheral component interconnect
express (PCle) device. In this context, the TMSL may provide
avirtual sprite device and an associated virtual sprite memory
region. The virtual sprite device may be implemented via a
sprite engine of a graphics processor, for example, and may
provide a sprite, an image that may overlay frame buffers. In
this context, the sprite may provide an image that copies or
emulates a presentation to a user (i.e., the presentation the
user would have viewed via a standard graphics pipeline)
such that the user sees no change in the information displayed
to them. However, as used herein, the sprite may display the
same data to the user via a separate and secure graphics
pipeline (i.e., a sprite pipeline). In general, the data to be
presented to the user may be sensitive data. The sensitive data
may be received at a device or system or generated internally
via the device or system. For example, the data may include
financial data received via a network such as the Internet. Or,
for example, the data may be keystroke data (received via a
keyboard or virtual keyboard, or the like) received at the
device and displayed to the user such as a username, pass-
word, or credit card number, or the like.

For illustrative purposes, in a non-protected operation, a
graphics pipeline may provide display data to a display
device. For example, a display buffer may be accessed by, for
example, an application programming interface (API) to pro-
vide the data in the display buffer to a windows manager. The
windows manager may optionally compose the data and pro-
vide it to a graphics driver (which may include a graphics
translation table (GTT) for translating virtual addresses to
physical addresses), which may provide the data (via a physi-
cal memory)to a graphics device, such as a display device. As
will be appreciated, such operations may be exposed to a
malware attack.

As described in greater detail below, in the discussed
implementations, a place holder display buffer (which may
contain non-sensitive data, fake data, or the like) may provide
data via the discussed pipeline such that any malware attack
will find only the non-valuable, non-sensitive data held in the
place holder display buffer. To display the (potentially sensi-
tive) data to the user, an alternative graphics pipeline (i.e., a
sprite pipeline) may be used. The alternative pipeline may
only allow access to whitelisted or trusted software or code.
For example, in response to sensitive data being received in
the discussed isolated display buffer (or other event triggering
the described protective techniques), data held in the place
holder display buffer may be provided to the windows man-
ager upon a API being invoked. Further, sensitive data held in
the isolated display buffer may be transferred, via a virtual
sprite device to a virtual sprite memory region. As discussed,
the virtual sprite device and virtual sprite memory region may
be known to be secure due to being registered by the TMSL..
The sensitive data may be further transferred to the discussed
access controlled graphics memory region of the graphics
memory space. Also as discussed, the access controlled
graphics memory region may be known to be secure due to
having a trusted memory view generated by the TMSL. The
secure data may then be transferred to a graphics device, such
as a display device, for viewing by the user. As will be appre-
ciated, using the described techniques, any malware attack
may only receive non-sensitive data and the sensitive data
may have bypassed the attacked graphics pipeline for a secure
graphics pipeline. Such implementations may provide secu-
rity for display data.

FIG. 1is an illustrative diagram of an example system 100
for securing display output data, arranged in accordance with

10

15

20

25

30

35

40

45

50

55

60

65

4

at least some implementations of the present disclosure. As
shown, system 100 may include a process address space 102,
awindows manager 110, application programming interfaces
(APIs) 114, a graphics driver 120 implementing a graphics
translation table (GTT) 122, a graphics memory space 130,
and a trusted memory service layer (TMSL) 140. System 100
may also include a display device 170. In various implemen-
tations, system 100 may be configured to provide security to
user data. As is discussed further below, system 100 may be
employed via various hardware, firmware, and software
implementations.

In some examples, system 100 may include additional
items that have not been shown in FIG. 1 for the sake of
clarity. For example, system 100 may include one or more
central processing units, a radio frequency-type (RF) trans-
ceiver, a display, an antenna, an operating system, a graphics
processor or the like. Further, system 100 may include addi-
tional items such as a speaker, a microphone, an accelerom-
eter, memory, a router, network interface logic, etc. that have
not been shown in FIG. 1 for the sake of clarity.

As discussed, system 100 may provide security for user
data. As shown, system 100 may include TMSL 140, which
may be implemented via one or more central processing units
of'system 100. As discussed, TMSL 140 may be configured to
provide physical memory views only accessible by
whitelisted (i.e., software known to be validated and trusted)
software, programs, or virtual devices, or the like. In some
examples, TMSL 140 may be a virtual machine extension
(VMX) root mode component. In some examples, TMSL 140
may be operate in VMX-root mode and use Extended Page
Table hardware to isolate physical memory of isolated display
buffer 106, control access to GTT 122, control access to
virtual sprite memory region 160, and/or control access to
graphics memory space 130. In such examples, TMSL 140
may use Extended Page Table virtualization technology for
memory management including memory access control and
isolation. TMSL 140 may be configured to compartmentalize
a kernel virtual addresses space or a process virtual address
space into separate physical memory views. Such separation
may allow for physical memory views only accessible to
whitelisted or trusted software or code (i.e., isolated memory
or access controlled memory). Other, non-protected, areas of
memory may be accessible to any code, which may be
whitelisted or trusted or unknown (and potentially malware,
for example).

As shown in FIG. 1, TMSL 140 may provide for isolated
display buffer 106, which may only be accessed viaa physical
memory view by a registered program (e.g., software, virtual
devices, or the like), for example. Isolated display buffer 106
may be a portion of process address space 102, for example,
and may be marked as isolated via the described physical
memory view managed by TMSL 140. The physical memory
view associated with isolated display buffer 106 may be
described as an isolated display buffer trusted memory view,
for example. Further, system 100 may include place holder
display buffer 104 as a portion of process address space 102,
which may not be protected by a physical memory view.

Further, as shown, TMSL 140 may provide for access
controlled region 132 of graphics memory space 130. Access
controlled region 132 may only be accessed via a physical
memory view by a registered program as managed by TMSL
140, for example. The physical memory view associated with
access controlled region 132 may be described as an access
controlled region trusted memory view, for example. As
shown, graphics driver 120 may include a graphics translation
table (GTT) 122. GTT 122 may provide a translation of
virtual memory addresses to physical memory addresses such

US 9,158,942 B2

5

as, for example, translating kernel virtual addresses to physi-
cal addresses. In some examples, virtual sprite device 150
(and the operating system and/or other devices of system 100)
may access and/or control areas of graphics memory space
130 via GTT 122. In the output display security context
discussed herein, TMSL 140 may implement a physical
memory view to limit which devices and/or the operating
system may have access to the GTT to write to graphics
memory space 130. In some examples, marking a portion of
graphics memory space 130 as access controlled graphics
memory region 132 may include accessing GTT 122 via
physical memory view implemented via the TMSL 140. In
some examples, graphics memory space 130 and virtual
sprite memory region 160 may be implemented as a memory
mapped input/output (MMIO) memory spaces. For example,
virtual sprite memory region 160 may be a 1:1 copy or remap-
ping of graphics memory space 130. In some examples, the
discussed implementations may include disabling a blitter
(BLT) engine and enabling monitoring of GTT 122 via the
operating system of system 100. Upon completion of the
secure presentation of display data, monitoring of GTT 122
may be disabled and the blitter engine may be enabled. Fur-
ther, upon completion of the secure presentation of display
data, access controlled region 132 and/or isolated display
buffer 106 may be disabled and returned for general usage by
system 100.

It should be noted that TMSL 140 may provide individual
physical memory views having the same or different proper-
ties such as, for example, lists of programs or virtual devices
that may access the individual physical memory views. In the
context of protecting isolated display butfer 106 and access
controlled region 132, the physical memory views may each
allow access via virtual sprite device 150 and virtual sprite
memory region 160; however, they may allow access to other
differing programs (if any) as needed.

Also as discussed TMSL 140 may be TMSL may be con-
figured to generate or emulate a device. For example, TMSL
140 may provide virtual sprite device 150 and virtual sprite
memory device region 160. Further, various components of
system 100 may need to be loaded or set-up prior to protecting
sensitive data 108, for example. To set-up and/or load various
components of system 100, TMSL 140 may be loaded using
any suitable techniques such as, for example, during a boot up
of'system 100 or upon opening a secure application platform
or the like. TMSL 140 may expose an (as yet) unverified
virtual sprite device driver (i.e., software that operates a vir-
tual sprite device). The unverified sprite device driver may be
loaded via the operating system. Upon successtully loading
the virtual sprite device driver, TMSL 140 may determine
whether the unverified virtual sprite device driver is included
on a provisioned whitelist (i.e., that the sprite device driver is
whitelisted). If the unverified virtual sprite device driver is
whitelisted, the virtual sprite device may be registered by
TMSL 140, allowed to operate, provided associated virtual
memory space, and/or have access to various physical
memory views, for example. In other implementations TMSL
140 may load only expose a virtual sprite device driver known
or flagged to be whitelisted.

As discussed, in some implementations, virtual sprite
device 150 may be exposed and/or emulated as a PCI or PCle
virtual device. In such implementations, virtual sprite device
150 may need to be enumerated by the operating system as a
PCI or PCle device. In some examples, TMSL 140 may be
loaded and the unverified virtual sprite device may be
exposed prior to the operating system enumerating PCI or
PCle devices. In other examples, TMSL 140 may be loaded
after the operating system has enumerated PCI or PCle

10

15

20

25

30

35

40

45

50

55

60

65

6

devices, and the unverified virtual sprite device may be
exposed as a hot-plug device that invokes an operating system
device manager to rescan a PCI or PCle bus.

Returning now to the discussion of virtual sprite device 150
and virtual sprite memory device region 160, virtual sprite
device 150 and virtual sprite memory device region 160 may
have access to isolated display buffer 106 and access con-
trolled region 132. Virtual sprite device 150 may be imple-
mented via a sprite engine of a graphics processor, for
example, and may provide a sprite, an image that may overlay
frame buffers. As discussed, a sprite may provide an image
that copies or emulates a presentation to a user and may be
used herein may present the same data to the user via a
separate and secure graphics pipeline (i.e., a sprite pipeline).
As shown in FIG. 1, the data to be presented to the user may
be sensitive data 108. In general, sensitive data 108 may
include any data that may need to be protected from malware
such as, for example, usernames and passwords, financial
account information, or the like. Sensitive data may be
received at system 100 or generated internally via system 100.
For example, sensitive data 108 may include financial data
received via a network such as the Internet. Or, for example,
sensitive data 108 may be keystroke data (received via a
keyboard or virtual keyboard, or the like) received at the
device and displayed to the user such as a username, pass-
word, or credit card number, or the like.

The process for protecting sensitive data 108 may be
invoked in response to sensitive data 108 being received at
isolated display buffer 106 or in response to another trigger-
ing event. Usage of isolated display buffer 106 may be trig-
gered by any suitable event such as, for example, the identi-
fication of data coming from a protected process being
associated with a hardware protected environment or a pro-
tected process registering for protection with TMSL 140. In
general, a process (e.g., a software program) associated with
sensitive data 108 may be previously registered by TMSL 140
as a protected (e.g., trusted) process. Such a registration may
include determining, via TMSL 140, whether the process is a
whitelisted process or another verification technique. The
protected process may include any suitable process such as,
for example, a user mode process, a process related to a
financial transaction, an online financial transaction, another
online transaction, or the like.

In response to the reception of sensitive data 108 at isolated
display buffer 106, one or more APIs 114 may be invoked into
or via windows manager 110 to receive information such as,
for example, coordinates or other graphical information,
associated with place holder display buffer 104 associated
with the protected process. As discussed, such an operation or
operations may be typical in providing data from a display
buffer to a graphics pipeline for display to a user. As dis-
cussed, in the described techniques, place holder display
buffer 104 may include only non-sensitive data, or even fake
data, or the like such that any malware attacking the data will
not receive sensitive data 108 for example, such that sensitive
data 108 may be protected. Further, as discussed, to display
sensitive data 108 to the user via display device 170, a sepa-
rate graphics pipeline may be used. In general, APIs 114 may
include any suitable APIs such as, for example, DirectX APIs
available on Microsoft Windows.

Sensitive data 108 in isolated display buffer 106 may be
transferred to virtual sprite memory region 160, via virtual
sprite device 150, for example. As discussed, virtual sprite
device 150 may be a trusted, whitelisted program such that
there is little or no threat that the access to isolated display
buffer 106 is being performed by malware. Sensitive data 108
in virtual sprite memory region 160 may be transferred to

US 9,158,942 B2

7

access controlled region 132 via virtual sprite device 150, for
example. In other examples, sensitive data 108 may be trans-
ferred to access controlled region 132 via TMSL 140. In
either event, as sensitive data 108 may have been delivered to
graphics memory space 130 via a protected graphics pipeline
(e.g., a sprite pipeline).

Sensitive data 108 may be transferred or provided to dis-
play device 170 via any suitable technique from access con-
trolled region 132 of graphics memory space 130 for display
as display of sensitive data 180. In general, display device 170
may include any display device such as, for example, a moni-
tor, either integrated with system 100 or provided separately
and communicatively coupled (e.g., via wired or wireless
connection) to other components of system 100 to receive
sensitive data 108 for display.

As discussed, some implementations may include dis-
abling a blitter (BLT) engine and enabling monitoring of GTT
122 via the operating system of system 100. Upon completion
of'the secure presentation of display data, monitoring of GTT
122 may be disabled and the blitter engine may be enabled.
Further, upon completion of the secure presentation of dis-
play data, access controlled region 132 and/or isolated dis-
play buffer 106 may be disabled and returned for general
usage by system 100.

In general, the operations discussed with respect to FIG. 1
and elsewhere herein may secure display output data. Further,
as discussed, although any malware present in system 100
may access place holder display butfer 104, it may not access
isolated display bufter 106.

As will be discussed in greater detail below, system 100 or
other system discussed herein may be used to perform some
or all of the various functions discussed below in connection
with FIGS. 2-4, or the operations previously discussed with
respect to FIG. 1.

FIG. 2 is a flow chart illustrating an example process 200
for securing display output data, arranged in accordance with
atleast some implementations ofthe present disclosure. In the
illustrated implementation, process 200 may include one or
more operations, functions or actions as illustrated by one or
more of blocks 202, 204, 206, 208, 210, 212, 214, and/or 216.
By way of non-limiting example, process 200 will be
described herein with reference to example system 100 of
FIG. 1.

Process 200 may be utilized as a computer-implemented
method for securing display output data. Process 200 may
begin at block 202, “REGISTER A PROCESS AS A PRO-
TECTED PROCESS VIA A TRUSTED MEMORY SER-
VICE LAYER”, where a process may be registered, via a
trusted memory service layer, as a protected process. Regis-
tering a process may include determining whether the process
is a whitelisted process, for example. The protected process
may include any suitable process such as, for example, a
process related to a financial transaction, an online financial
transaction, another online transaction, or the like.

Processing may continue from operation 202 to operation
204, “MARK A PORTION OF A PROCESS ADDRESS
SPACE AS AN ISOLATED DISPLAY BUFFER AND
ANOTHER PORTION OF THE PROCESS ADDRESS
SPACE AS A PLACE HOLDER BUFFER”, where a portion
of a process address space may be marked as an isolated
display buffer and another portion of the process address
space may be marked as a place holder buffer. The isolated
display buffer may be protected and only accessed via a
trusted memory view managed via the trusted memory ser-
vice layer, for example. The place holder buffer may be
unprotected (e.g., open to the operating system, various pro-
grams and processes, and, potentially, malware), for example.

10

15

20

25

30

35

40

45

50

55

60

65

8

Processing may continue from operation 204 to operation
206, “MARK A PORTION OF A GRAPHICS MEMORY
SPACE AS AN ACCESS CONTROLLED GRAPHICS
MEMORY REGION”, where a portion of a graphics memory
space may be marked as an access controlled graphics
memory region. The access controlled graphics memory
region may be protected and only accessed via a trusted
memory view managed via the trusted memory service layer,
for example.

Processing may continue from operation 206 to operation
208, “PROVIDE A VIRTUAL SPRITE DEVICE AND AN
ASSOCIATED VIRTUAL SPRITE MEMORY REGION”,
where a virtual sprite device and an associated virtual sprite
memory region may be provided. The virtual sprite device
may be registered and provided via the trusted memory ser-
vice layer, for example. The virtual sprite device may access
the isolated display butfer and/or the access controlled graph-
ics memory region, for example. The associated virtual sprite
memory region may be a memory mapped input/output
(MMIO) memory space and may have a 1:1 correspondence
or mapping to the access controlled graphics memory region,
for example.

Processing may continue from operation 208 to operation
210, “INVOKE AN APPLICATION PROGRAMMING
INTERFACE VIA A WINDOWS MANAGER TO
RECEIVE INFORMATION ASSOCIATED WITH THE
PLACE HOLDER BUFFER”, where one or more application
programming interfaces (APIs) may be invoked via a window
manager to receive information associated with the place
holder buffer. The information associated with the place
holder buffer may include coordinates or other graphical
information, for example. In the situation where a malware
attack is in progress, the malware may attack data held in the
place holder buffer, which may include only non-sensitive
data, or even fake data, or the like.

Processing may continue from operation 210 to operation
212, “TRANSFER THE SENSITIVE DATA IN THE ISO-
LATED DISPLAY BUFFER TO THE VIRTUAL SPRITE
DEVICE MEMORY REGION”, where the sensitive data in
the isolated display buffer may be transferred to the virtual
sprite device memory region. The isolated display buffer may
be secured along a sprite graphics pipeline for secure presen-
tation to a user, for example.

Processing may continue from operation 212 to operation
214, “TRANSFER THE SENSITIVE DATA IN THE VIR-
TUAL SPRITE DEVICE MEMORY REGION TO THE
ACCESS CONTROLLED GRAPHICS MEMORY
REGION”, where the sensitive data in the virtual sprite
device memory region may be transferred to the access con-
trolled graphics memory region. The sensitive data may be
transferred via the virtual sprite device and/or the virtual
sprite device memory region, for example.

Processing may continue from operation 214 to operation
216, “PROVIDE THE SENSITIVE DATA IN THE ACCESS
CONTROLLED GRAPHICS MEMORY REGION TO A
DISPLAY DEVICE”, where the sensitive data in the access
controlled graphics memory region may be transferred to a
display device. The sensitive data may be displayed to the
user, for example. As discussed, the user may view a display
of the sensitive data without witnessing any difference
between the display of the sensitive data presented via the
sprite pipeline and a display the user would have seen if a
standard graphics pipeline were used to present the data to the
user.

US 9,158,942 B2

9

Some additional and/or alternative details related to pro-
cess 200 may be illustrated in one or more examples of
implementations discussed in greater detail below with
regard to FIGS. 3 and/or 4.

FIG. 3 is an illustrative diagram of example system 100 and
process 300 in operation, arranged in accordance with at least
some implementations of the present disclosure. In the illus-
trated implementation, process 300 may include one or more
operations, functions or actions as illustrated by one or more
ofactions 312,314, 316, 321, 322, 323, 324, 325, and/or 326.
By way of non-limiting example, process 300 will be
described herein with reference to example video coding
system 100 of FIG. 1.

In the illustrated implementation, system 100 may include
modules 302, the like, and/or combinations thereof. For
example, modules 302, may include windows manager 110,
process address space 102 and sprite pipeline 310, the like,
and/or combinations thereof. Windows manager 110 may be
configured to receive information associated with place
holder buffer 104. As discussed, the information associated
with place holder 104 buffer may include non-sensitive or
fake data or the like. Process address space 102 may be
configured to include isolated display buffer 106 for handling
sensitive data 108 and place holder display buffer 104, for
example. Sprite pipeline 310 may include virtual sprite
device 150, virtual sprite memory region 160, access con-
trolled region 132, trusted memory service layer 140, or com-
binations thereof. Sprite pipeline 310 may also include graph-
ics translation table 122 implemented via graphics driver 120
and graphics memory space 130, for example. Sprite pipeline
310 may be configured to transfer sensitive data 108 from
isolated memory buffer 106 to virtual sprite memory region
160 and further to access controlled region 132 via a path
protected from potential malware attacks. Sprite 310 may
transfer sensitive data to display device 170 for display to a
user as display of sensitive data 180. Although system 100, as
shown in FIG. 3, may include one particular set of blocks or
actions associated with particular modules, these blocks or
actions may be associated with different modules than the
particular module illustrated here.

Process 300 may be utilized as a computer-implemented
method for cross-layer cross-channel residual prediction.
Process 300 may begin at block 312, “MARK ISOLATED
DISPLAY BUFFER AND PLACE HOLDER BUFFER”,
where a portion of process address space 102 may be marked
as isolated display buffer 106 and another portion of process
address space 102 may be marked as place holder buffer 104.
Isolated display buffer 106 may be protected and only
accessed via a trusted memory view managed via trusted
memory service layer (TMSL) 140, for example. The place
holder buffer 140 may be unprotected (e.g., open to the oper-
ating system, various programs and processes, and, poten-
tially, malware), for example.

Processing may continue from operation 312 to operation
321, “REGISTER A PROCESS AS A PROTECTED PRO-
CESS”, where a process may be registered, via TMSL 140, as
aprotected process. Registering a process may include deter-
mining, via a predetermined whitelist managed via a TMSL
140, whether the process is a whitelisted process, for
example. The protected process may include any suitable
process such as, for example, a process related to a financial
transaction, an online financial transaction, another online
transaction, or the like.

Processing may continue from operation 321 to operation
322, “MARK ACCESS CONTROLLED GRAPHICS
MEMORY”, where a portion of graphics memory space 130
may be marked as access controlled graphics memory region

40

45

10

132. Access controlled graphics memory region 132 may be
protected and only accessed via a trusted memory view man-
aged via the TMSL 140, for example.

Processing may continue from operation 322 to operation
323, “PROVIDE VIRTUAL SPRITE DEVICE AND
MEMORY REGION”, where virtual sprite device 150 and
associated virtual sprite memory region 160 may be provided.
Virtual sprite device 150 may be registered and provided via
the TMSL 140, for example. Virtual sprite device 150 may
access isolated display buffer 106 and/or access controlled
region 132, for example. Associated virtual sprite memory
region 160 may be a memory mapped input/output (MMIO)
memory space and may have a 1:1 correspondence or map-
ping to access controlled graphics memory region 132, for
example.

Processing may continue from operation 323 to operation
324, “TRANSFER SENSITIVE DATA TO VIRTUAL
SPRITE MEMORY REGION”, where sensitive data 108 in
isolated display bufter 106 may be transferred to virtual sprite
memory region 160. Isolated display buffer 106 may be
secured along sprite pipeline 310 for secure presentation to a
user, for example.

Processing may continue from operation 324 to operation
325, “TRANSFER SENSITIVE DATA TO ACCESS CON-
TROLLED GRAPHICS MEMORY?”, where sensitive data
108 in virtual sprite memory region 160 may be transferred to
access controlled region 132. Sensitive data 108 may be trans-
ferred via virtual sprite device 150 and/or virtual sprite
memory region 160, for example.

Processing may continue from operation 325 to operation
326, “PROVIDE SENSITIVE DATA TO DISPLAY
DEVICE”, where sensitive data 108 in access controlled
region 132 may be transferred to display device 170. Sensi-
tive data 108 may be displayed to a user, for example, as
display of sensitive data 180. As discussed, the user may view
display of sensitive data 180 without witnessing any differ-
ence between display of sensitive data 180 presented via
sprite pipeline 310 and a display of data the user would have
seen if a standard graphics pipeline were used to present the
data to the user.

FIG. 4 is a flow chart illustrating an example process 400
for preparing a system to secure display output data, arranged
in accordance with at least some implementations of the
present disclosure. In the illustrated implementation, process
400 may include one or more operations, functions or actions
as illustrated by one or more of blocks 402, 404, 406, 408,
and/or 410. By way of non-limiting example, process 400 will
be described herein with reference to example system 100.

Process 400 may be utilized as a computer-implemented
method for securing display output data. Process 400 may
begin at block 402, “LOAD A TRUSTED MEMORY SER-
VICE LAYER?”, where trusted memory service layer (TMSL)
140 may be loaded. TMSL 140 may be loaded during a boot
up of system 100 or upon opening a secure application plat-
form or the like, for example. TMSL 140 may include a
virtual machine extension root mode component, for
example.

Processing may continue from operation 402 to operation
404, “EXPOSE, VIA THE TRUSTED MEMORY SERVICE
LAYER, AN UNVERIFIED VIRTUAL SPRITE DEVICE”,
where an unverified virtual sprite device may be exposed via
orby TMSL 140. The unverified sprite device may be exposed
by TMSL 140 in any suitable manner. For example, TMSL
may be configured to hook and/or emulate port access to
allow customized haling of PCI or PCle and such capability
may be utilized to expose the unverified sprite device.

US 9,158,942 B2

11

Processing may continue from operation 404 to operation
406, “LOAD AN UNVERIFIED VIRTUAL SPRITE
DEVICE DRIVER ASSOCIATED WITH THE UNVERI-
FIED VIRTUAL SPRITE DEVICE”, where an unverified
virtual sprite device driver associated with the unverified
virtual sprite device may be loaded. The unverified virtual
sprite device driver may be loaded using any suitable tech-
niques such as, for example, loading the unverified virtual
sprite device driver via the operating system of system 100.

Processing may continue from operation 406 to operation
408, “DETERMINE, VIA THE TRUSTED MEMORY SER-
VICE LAYER, WHETHER THE UNVERIFIED VIRTUAL
SPRITE DEVICE DRIVER IS INCLUDED ON A PROVI-
SIONED WHITELIST”, where it may be determined, via
TMSL 140, whether the unverified virtual sprite device driver
is included on a provisioned whitelist. As discussed, TMSL
140 may manage a whitelist of trusted and/or secure pro-
grams and/or code. TMSL 140 may determine whether the
unverified virtual sprite device driver may be included on the
whitelist. As discussed, if the unverified virtual sprite device
driver is included on the whitelist, the unverified virtual sprite
device driver may be deemed secure. If it is not on the
whitelist, the unverified virtual sprite device driver may be
deemed unknown and may not be allowed to be registered,
loaded, or operated, or the like.

Processing may continue from operation 408 to operation
410, “TF THE UNVERIFIED VIRTUAL SPRITE DEVICE
DRIVER IS INCLUDED ON THE PROVISIONED
WHITELIST, REGISTER THE UNVERIFIED VIRTUAL
SPRITE DEVICE”, where, if the unverified virtual sprite
device driver is deemed to be included on the provisioned
whitelist, the virtual sprite device may be registered by TMSL
140, allowed to operate, provided associated virtual memory
space, and/or have access to various physical memory views,
for example.

Using such techniques, a secure sprite pipeline may be
set-up or configured on system 100. As discussed, the secure
sprite pipeline may be an alternative pipeline to the standard
graphics pipeline and may provide security for sensitive data
against malware attacks directed at the output display data of
system 100.

While implementation of example processes 200, 300,
400, and processes discussed with respect to FIG. 1 may
include the undertaking of all blocks shown in the order
illustrated, the present disclosure is not limited in this regard
and, in various examples, implementation of processes 200
and 300 may include the undertaking only a subset of the
blocks shown and/or in a different order than illustrated.

In addition, any one or more of the blocks of FIGS. 1-4, and
processes discussed with respect to FIG. 1, may be under-
taken in response to instructions provided by one or more
computer-program products. Such program products may
include signal bearing media providing instructions that,
when executed by, for example, a processor, may provide the
functionality described herein. The computer-program prod-
ucts may be provided in any form of computer-readable
medium. Thus, for example, a processor including one or
more processor core(s) may undertake one or more of the
blocks shown in FIGS. 1-4.

As used in any implementation described herein, the term
“module” refers to any combination of software, firmware
and/or hardware configured to provide the functionality
described herein. The software may be embodied as a soft-
ware package, code and/or instruction set or instructions, and
“hardware”, as used in any implementation described herein,
may include, for example, singly or in any combination,
hardwired circuitry, programmable circuitry, state machine

5

10

20

25

30

35

40

45

50

55

60

65

12

circuitry, and/or firmware that stores instructions executed by
programmable circuitry. The modules may, collectively or
individually, be embodied as circuitry that forms part of a
larger system, for example, an integrated circuit (IC), system
on-chip (SoC), and so forth.

FIG. 5 is an illustrative diagram of a system 100 for secur-
ing display output data, arranged in accordance with at least
some implementations of the present disclosure. In the illus-
trated implementation, system 100 may include one or more
central processing units 506, one or more memory stores 508,
one or more graphics processing units 510, sprite pipeline
310, and/or display device 170. Central processing units 506,
memory store 508, graphics processing units 510, and sprite
pipeline 310 may be capable of communication with one
another, via, for example, a bus or other access. In various
implementations, display device 170 may be integrated in
system 100 or implemented separately from system 100.

As shown, central processing units 506 may implement
windows manager 110, operating system 520, and applica-
tion programming interfaces (APIs) 114; graphics processing
units 510 may include sprite engine 512; sprite pipeline 310
may include trusted memory service layer (TMSL) 140, vir-
tual sprite device 150, and virtual sprite memory region 160;
and memory stores 508 may include process address space
102 and graphics memory space 130, which may include
access controlled region 132, which is not shown for the sake
of clarity. Further as shown, graphics driver 120 may be
implemented via central processing units 506 and/or graphics
processing units 510.

As will be appreciated, the modules illustrated in FIG. 5
may include a variety of software and/or hardware modules
and/or modules that may be implemented via software and/or
hardware. For example, virtual sprite device 150 may be
implemented as software via central processing units 506
and/or graphics processing units 510. Further, the shown
memory stores 508 may be shared memory for central pro-
cessing units 506 and/or graphics processing units 510, for
example. Also, system 100 may be implemented in a variety
of ways. For example, system 100 (excluding display device
170) may be implemented as a single chip or device having a
graphics processor, a quad-core central processing unit, on-
board cache, and a memory controller input/output (I/O)
module (not shown). In other examples, system 100 (again
excluding display device 170) may be implemented as a
chipset.

For example, trusted memory service layer 140 may be
implemented via central processing units 506, virtual sprite
device 130 may be implemented via sprite engine 512 of
graphics processing units 510, process address space 102 may
be implemented via memory stores 508, graphics memory
space 114 may be implemented via memory stores 508, win-
dows manager 110 may be implemented via the central pro-
cessing units 506, the graphics translation table (not shown in
FIG. 5) may be implemented via graphics driver 120, and
graphics driver 120 may be implemented via one of central
processing units 506 or graphics processing units 510.

Central processing units 506 may include any suitable
implementation including, for example, microprocessor(s),
multicore processors, application specific integrated circuits,
chip(s), chipsets, or the like. Further, graphics processing
units 510 may include any suitable implementation includ-
ing, for example, processor(s), multicore processors, appli-
cation specific integrated circuits, programmable logic
devices, graphics cards, integrated graphics, general purpose
graphics processing unit(s), or the like. In addition, memory
stores 508 may be any type of memory such as volatile
memory (e.g., Static Random Access Memory (SRAM),

US 9,158,942 B2

13

Dynamic Random Access Memory (DRAM), etc.) or non-
volatile memory (e.g., flash memory, etc.), and so forth. In a
non-limiting example, memory stores 508 may be imple-
mented by cache memory. As discussed, in various examples,
system 100 may be implemented as a chipset or as a system on
a chip. Operating system 520 may include any suitable oper-
ating system such as, for example, a Microsoft Windows
based operating system.

FIG. 6 illustrates an example system 600 in accordance
with the present disclosure. In various implementations, sys-
tem 600 may be a media system although system 600 is not
limited to this context. For example, system 600 may be
incorporated into a personal computer (PC), laptop computer,
ultra-laptop computer, tablet, touch pad, portable computer,
handheld computer, palmtop computer, personal digital assis-
tant (PDA), cellular telephone, combination cellular tele-
phone/PDA,; television, smart device (e.g., smart phone,
smart tablet or smart television), mobile internet device
(MID), messaging device, data communication device, and
so forth.

In various implementations, system 600 includes a plat-
form 602 coupled to a display 620. Platform 602 may
receive content from a content device such as content services
device(s) 630 or content delivery device(s) 640 or other simi-
lar content sources. A navigation controller 650 including one
or more navigation features may be used to interact with, for
example, platform 602 and/or display 620. Each of these
components is described in greater detail below.

In various implementations, platform 602 may include any
combination of a chipset 605, processor 610, memory 612,
storage 614, graphics subsystem 615, applications 616 and/or
radio 618. Chipset 605 may provide intercommunication
among processor 610, memory 612, storage 614, graphics
subsystem 615, applications 616 and/or radio 618. For
example, chipset 605 may include a storage adapter (not
depicted) capable of providing intercommunication with
storage 614.

Processor 610 may be implemented as a Complex Instruc-
tion Set Computer (CISC) or Reduced Instruction Set Com-
puter (RISC) processors; x86 instruction set compatible pro-
cessors, multi-core, or any other microprocessor or central
processing unit (CPU). In various implementations, proces-
sor 610 may be dual-core processor(s), dual-core mobile pro-
cessor(s), and so forth.

Memory 612 may be implemented as a volatile memory
device such as, but not limited to, a Random Access Memory
(RAM), Dynamic Random Access Memory (DRAM), or
Static RAM (SRAM).

Storage 614 may be implemented as a non-volatile storage
device such as, but not limited to, a magnetic disk drive,
optical disk drive, tape drive, an internal storage device, an
attached storage device, flash memory, battery backed-up
SDRAM (synchronous DRAM), and/or a network accessible
storage device. In various implementations, storage 614 may
include technology to increase the storage performance
enhanced protection for valuable digital media when multiple
hard drives are included, for example.

Graphics subsystem 615 may perform processing of
images such as still or video for display. Graphics subsystem
615 may be a graphics processing unit (GPU) or a visual
processing unit (VPU), for example. An analog or digital
interface may be used to communicatively couple graphics
subsystem 615 and display 620. For example, the interface
may be any of a High-Definition Multimedia Interface, Dis-
play Port, wireless HDMI, and/or wireless HD compliant
techniques. Graphics subsystem 615 may be integrated into
processor 610 or chipset 605. In some implementations,

10

15

20

25

30

35

40

45

50

55

60

65

14

graphics subsystem 615 may be a stand-alone card commu-
nicatively coupled to chipset 605.

The graphics and/or video processing techniques described
herein may be implemented in various hardware architec-
tures. For example, graphics and/or video functionality may
be integrated within a chipset. Alternatively, a discrete graph-
ics and/or video processor may be used. As still another
implementation, the graphics and/or video functions may be
provided by a general-purpose processor, including a multi-
core processor. In further embodiments, the functions may be
implemented in a consumer electronics device.

Radio 618 may include one or more radios capable of
transmitting and receiving signals using various suitable
wireless communications techniques. Such techniques may
involve communications across one or more wireless net-
works. Example wireless networks include (but are not lim-
ited to) wireless local area networks (WL ANs), wireless per-
sonal area networks (WPANSs), wireless metropolitan area
network (WMANSs), cellular networks, and satellite net-
works. In communicating across such networks, radio 618
may operate in accordance with one or more applicable stan-
dards in any version.

In various implementations, display 620 may include any
television type monitor or display. Display 620 may include,
for example, a computer display screen, touch screen display,
video monitor, television-like device, and/or a television. Dis-
play 620 may be digital and/or analog. In various implemen-
tations, display 620 may be a holographic display. Also, dis-
play 620 may be a transparent surface that may receive a
visual projection. Such projections may convey various forms
of information, images, and/or objects. For example, such
projections may be a visual overlay for a mobile augmented
reality (MAR) application. Under the control of one or more
software applications 616, platform 602 may display user
interface 622 on display 620.

Invarious implementations, content services device(s) 630
may be hosted by any national, international and/or indepen-
dent service and thus accessible to platform 602 via the Inter-
net, for example. Content services device(s) 630 may be
coupled to platform 602 and/or to display 620. Platform 602
and/or content services device(s) 630 may be coupled to a
network 660 to communicate (e.g., send and/or receive)
media information to and from network 660. Content delivery
device(s) 640 also may be coupled to platform 602 and/or to
display 620.

Invarious implementations, content services device(s) 630
may include a cable television box, personal computer, net-
work, telephone, Internet enabled devices or appliance
capable of delivering digital information and/or content, and
any other similar device capable of unidirectionally or bidi-
rectionally communicating content between content provid-
ers and platform 602 and/display 620, via network 660 or
directly. It will be appreciated that the content may be com-
municated unidirectionally and/or bidirectionally to and from
any one of the components in system 600 and a content
provider via network 660. Examples of content may include
any media information including, for example, video, music,
medical and gaming information, and so forth.

Content services device(s) 630 may receive content such as
cable television programming including media information,
digital information, and/or other content. Examples of con-
tent providers may include any cable or satellite television or
radio or Internet content providers. The provided examples
are not meant to limit implementations in accordance with the
present disclosure in any way.

In various implementations, platform 602 may receive
control signals from navigation controller 650 having one or

US 9,158,942 B2

15

more navigation features. The navigation features of control-
ler 650 may be used to interact with user interface 622, for
example. In embodiments, navigation controller 650 may be
a pointing device that may be a computer hardware compo-
nent (specifically, a human interface device) that allows a user
to input spatial (e.g., continuous and multi-dimensional) data
into a computer. Many systems such as graphical user inter-
faces (GUI), and televisions and monitors allow the user to
control and provide data to the computer or television using
physical gestures.

Movements of the navigation features of controller 650
may be replicated on a display (e.g., display 620) by move-
ments of a pointer, cursor, focus ring, or other visual indica-
tors displayed on the display. For example, under the control
of software applications 616, the navigation features located
on navigation controller 650 may be mapped to virtual navi-
gation features displayed on user interface 622, for example.
In embodiments, controller 650 may not be a separate com-
ponent but may be integrated into platform 602 and/or display
620. The present disclosure, however, is not limited to the
elements or in the context shown or described herein.

In various implementations, drivers (not shown) may
include technology to enable users to instantly turn on and off
platform 602 like a television with the touch of a button after
initial boot-up, when enabled, for example. Program logic
may allow platform 602 to stream content to media adaptors
or other content services device(s) 630 or content delivery
device(s) 640 even when the platform is turned “off” In
addition, chipset 605 may include hardware and/or software
support for 8.1 surround sound audio and/or high definition
(7.1) surround sound audio, for example. Drivers may include
a graphics driver for integrated graphics platforms. In
embodiments, the graphics driver may comprise a peripheral
component interconnect (PCI) Express graphics card.

In various implementations, any one or more of the com-
ponents shown in system 600 may be integrated. For example,
platform 602 and content services device(s) 630 may be inte-
grated, or platform 602 and content delivery device(s) 640
may be integrated, or platform 602, content services device(s)
630, and content delivery device(s) 640 may be integrated, for
example. In various embodiments, platform 602 and display
620 may be an integrated unit. Display 620 and content ser-
vice device(s) 630 may be integrated, or display 620 and
content delivery device(s) 640 may be integrated, for
example. These examples are not meant to limit the present
disclosure.

In various embodiments, system 600 may be implemented
as a wireless system, a wired system, or a combination of
both. When implemented as a wireless system, system 600
may include components and interfaces suitable for commu-
nicating over a wireless shared media, such as one or more
antennas, transmitters, receivers, transceivers, amplifiers, fil-
ters, control logic, and so forth. An example of wireless
shared media may include portions of a wireless spectrum,
such as the RF spectrum and so forth. When implemented as
a wired system, system 600 may include components and
interfaces suitable for communicating over wired communi-
cations media, such as input/output (I/O) adapters, physical
connectors to connect the I/O adapter with a corresponding
wired communications medium, a network interface card
(NIC), disc controller, video controller, audio controller, and
the like. Examples of wired communications media may
include a wire, cable, metal leads, printed circuit board
(PCB), backplane, switch fabric, semiconductor material,
twisted-pair wire, co-axial cable, fiber optics, and so forth.

Platform 602 may establish one or more logical or physical
channels to communicate information. The information may

10

15

20

25

30

35

40

45

50

55

60

65

16

include media information and control information. Media
information may refer to any data representing content meant
for a user. Examples of content may include, for example,
data from a voice conversation, videoconference, streaming
video, electronic mail (“email”) message, voice mail mes-
sage, alphanumeric symbols, graphics, image, video, text and
so forth. Data from a voice conversation may be, for example,
speech information, silence periods, background noise, com-
fort noise, tones and so forth. Control information may refer
to any data representing commands, instructions or control
words meant for an automated system. For example, control
information may be used to route media information through
a system, or instruct a node to process the media information
in a predetermined manner. The embodiments, however, are
not limited to the elements or in the context shown or
described in FIG. 6.

As described above, system 600 may be embodied in vary-
ing physical styles or form factors. FIG. 7 illustrates imple-
mentations of a small form factor device 700 in which system
600 may be embodied. In embodiments, for example, device
700 may be implemented as a mobile computing device hav-
ing wireless capabilities. A mobile computing device may
refer to any device having a processing system and a mobile
power source or supply, such as one or more batteries, for
example.

As described above, examples of a mobile computing
device may include a personal computer (PC), laptop com-
puter, ultra-laptop computer, tablet, touch pad, portable com-
puter, handheld computer, palmtop computer, personal digi-
tal assistant (PDA), cellular telephone, combination cellular
telephone/PDA, television, smart device (e.g., smart phone,
smart tablet or smart television), mobile internet device
(MID), messaging device, data communication device, and
so forth.

Examples of a mobile computing device also may include
computers that are arranged to be worn by a person, such as a
wrist computer, finger computer, ring computer, eyeglass
computer, belt-clip computer, arm-band computer, shoe com-
puters, clothing computers, and other wearable computers. In
various embodiments, for example, a mobile computing
device may be implemented as a smart phone capable of
executing computer applications, as well as voice communi-
cations and/or data communications. Although some embodi-
ments may be described with a mobile computing device
implemented as a smart phone by way of example, it may be
appreciated that other embodiments may be implemented
using other wireless mobile computing devices as well. The
embodiments are not limited in this context.

As shown in FIG. 7, device 700 may include a housing 702,
a display 704, an input/output (I/O) device 706, and an
antenna 708. Device 700 also may include navigation features
712. Display 704 may include any suitable display unit for
displaying information appropriate for a mobile computing
device. I/O device 706 may include any suitable /O device
for entering information into a mobile computing device.
Examples for /O device 706 may include an alphanumeric
keyboard, a numeric keypad, a touch pad, input keys, buttons,
switches, rocker switches, microphones, speakers, voice rec-
ognition device and software, and so forth. Information also
may be entered into device 700 by way of microphone (not
shown). Such information may be digitized by a voice recog-
nition device (not shown). The embodiments are not limited
in this context.

Various embodiments may be implemented using hard-
ware elements, software elements, or a combination of both.
Examples of hardware elements may include processors,
microprocessors, circuits, circuit elements (e.g., transistors,

US 9,158,942 B2

17

resistors, capacitors, inductors, and so forth), integrated cir-
cuits, application specific integrated circuits (ASIC), pro-
grammable logic devices (PLD), digital signal processors
(DSP), field programmable gate array (FPGA), logic gates,
registers, semiconductor device, chips, microchips, chip sets,
and so forth. Examples of software may include software
components, programs, applications, computer programs,
application programs, system programs, machine programs,
operating system software, middleware, firmware, software
modules, routines, subroutines, functions, methods, proce-
dures, software interfaces, application programming inter-
faces (API), instruction sets, computing code, computer code,
code segments, computer code segments, words, values, sym-
bols, or any combination thereof. Determining whether an
embodiment is implemented using hardware elements and/or
software elements may vary in accordance with any number
of factors, such as desired computational rate, power levels,
heat tolerances, processing cycle budget, input data rates,
output data rates, memory resources, data bus speeds and
other design or performance constraints.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the logic
O processor.

While certain features set forth herein have been described
with reference to various implementations, this description is
not intended to be construed in a limiting sense. Hence, vari-
ous modifications of the implementations described herein,
as well as other implementations, which are apparent to per-
sons skilled in the art to which the present disclosure pertains
are deemed to lie within the spirit and scope of the present
disclosure.

The following examples pertain to further embodiments.

In one example, a computer-implemented method for
securing display output data may include registering a pro-
cess as a protected process via a trusted memory service layer.
A portion of a process address space may be marked as an
isolated display buffer associated with the protected process
and another portion of the process address space may be
marked as a place holder display buffer associated with the
protected process. A portion of a graphics memory space may
be marked as an access controlled graphics memory region. A
virtual sprite device and an associated virtual sprite memory
region may be provided. In response to the reception of sen-
sitive data into the isolated display buffer, an application
programming interface may be invoked via a windows man-
ager to receive information associated with the place holder
display buffer associated with the protected process. The
sensitive data in the isolated display buffer may be transferred
to the virtual sprite device memory region. The sensitive data
in the virtual sprite device memory region may be transferred
to the access controlled graphics memory region. The sensi-
tive data in the access controlled graphics memory region
may be provided to a display device.

In a further example of a computer-implemented method
for securing display output data, the trusted memory service
layer may be loaded. An unverified virtual sprite device may
be exposed via the trusted memory service layer. An unveri-
fied virtual sprite device driver associated with the unverified
virtual sprite device may be loaded via an operating system. It
may be determined, via the trusted memory service layer,

10

20

25

30

35

40

45

50

55

60

18

whether the unverified virtual sprite device driver is included
on a provisioned whitelist. If the unverified virtual sprite
device driver is included on the provisioned whitelist, the
unverified virtual sprite device may be registered as the vir-
tual sprite device via the trusted memory service layer. An
isolated display buffer trusted memory view may be created,
via the trusted memory service layer, such that the isolated
display buffer trusted memory view allows access to the iso-
lated display buftfer only via a registered program, and such
that the virtual sprite device is a registered program. An
access controlled graphics memory region trusted memory
view may be created, via the trusted memory service layer,
such that the access controlled graphics memory region
trusted memory view allows access to the access controlled
graphics memory region only via a registered program, and
such that the virtual sprite device is a registered program. The
sensitive data may be received into the isolated display buffer.
Usage of the isolated display buffer may be selectively trig-
gered based on identification of data coming from the pro-
tected process being associated with a hardware protected
environment or the protected process registering for protec-
tion with the trusted memory service layer. A blitter engine
may be disabled and monitoring of the graphics translation
table may be enabled, via the operating system. The virtual
sprite device may be implemented via a sprite engine of a
graphics processor and the trusted memory service layer may
be implemented via a central processing unit. Marking the
portion of the graphics memory space as the access controlled
graphics memory region may include accessing a graphics
translation table via a graphics translation table physical
memory view implemented via the trusted memory service
layer, such that the graphics translation table is configured to
translate virtual graphics memory addresses to physical
graphics memory addresses. The virtual sprite device may be
a registered program having access to the isolated display
buffer and the access controlled graphics memory region. The
trusted memory service layer may be loaded and the unveri-
fied virtual sprite device may be exposed prior to the operat-
ing system enumerating Peripheral Component Interconnect
Express devices. The trusted memory service layer may be
loaded after the operating system enumerates Peripheral
Component Interconnect Express devices, and such that
exposing the unverified virtual sprite device includes expos-
ing the unverified virtual sprite device as a hot-plug device to
invoke an operating system device manager to rescan a
Peripheral Component Interconnect Express bus. The infor-
mation associated with the place holder display buffer may
include coordinates of the place holder display buffer. The
protected process may include a process related to an online
financial transaction. The place holder display buffer may be
open to the operating system and the isolated display buffer
may be isolated from the operating system. The graphics
memory space may include a memory mapped input/output
(MMIO) memory space. Malware may access the place
holder display buffer but not the isolated display buffer. The
trusted memory service layer may include a virtual machine
extension root mode component.

In another example, a system for securing display output
data on a computer may include a display device, one or more
processors, one or more memory stores, a process address
space including a place holder display buffer, a windows
manger, and a sprite pipeline including a trusted memory
service layer, a virtual sprite device and an associated virtual
sprite memory region. The display device may be configured
to display data. The one or more processors may be commu-
nicatively coupled to the display device. The one or more
memory stores may be communicatively coupled to the one

US 9,158,942 B2

19

or more processors. The sprite pipeline may be configured to
register a process as a protected process via the trusted
memory service layer, mark a portion of the process address
space as an isolated display buffer associated with the pro-
tected process, mark a portion of a graphics memory space as
an access controlled graphics memory region, receive sensi-
tive data in the isolated display buffer, transfer the sensitive
data in the isolated display buffer to the virtual sprite device
memory region, transfer the sensitive data in the virtual sprite
device memory region to the access controlled graphics
memory region, and provide the sensitive data in the access
controlled graphics memory region to the display device.

In a further example of a system for securing display output
data on a computer, the system may include one or more
graphics processors and an operating system. The one or
more graphics processors may be communicatively coupled
to the one or more processors, and the one or more graphics
processors may include a sprite engine. The operating system
may be implemented via the one or more processors. The
sprite pipeline may be further configured to expose, via the
trusted memory service layer, an unverified virtual sprite
device, determine, via the trusted memory service layer,
whether an unverified virtual sprite device driver is included
on a provisioned whitelist, if the unverified virtual sprite
device driver is included on the provisioned whitelist, regis-
ter, via the trusted memory service layer, the unverified virtual
sprite device as the virtual sprite device, create, via the trusted
memory service layer, an isolated display buffer trusted
memory view, such that the isolated display buffer trusted
memory view allows access to the isolated display buffer only
via a registered program, and such that the virtual sprite
device is a registered program, create, via the trusted memory
service layer, an access controlled graphics memory region
trusted memory view, such that the access controlled graphics
memory region trusted memory view allows access to the
access controlled graphics memory region only via a regis-
tered program, and such that the virtual sprite device is a
registered program, receive the sensitive data into the isolated
display buffer, selectively trigger usage of the isolated display
buffer based on one of identification of data coming from the
protected process being associated with a hardware protected
environment or the protected process registering for protec-
tion with the trusted memory service layer. The operating
system may be configured to load the trusted memory service
layer, load the unverified virtual sprite device driver associ-
ated with the unverified virtual sprite device, disable a blitter
engine and enable monitoring of the graphics translation
table, and enumerate Peripheral Component Interconnect
Express devices, wherein the trusted memory service layer is
loaded and the unverified virtual sprite device is exposed prior
to the operating system enumerating Peripheral Component
Interconnect Express devices and wherein the unverified vir-
tual sprite device is exposed as a hot-plug device to invoke an
operating system device manager to rescan a Peripheral Com-
ponent Interconnect Express bus. The sprite pipeline may be
configured to mark the portion of the graphics memory space
as the access controlled graphics memory region by accessing
a graphics translation table via a graphics translation table
physical memory view implemented via the trusted memory
service layer, such that the graphics translation table is con-
figured to translate virtual graphics memory addresses to
physical graphics memory addresses. The information asso-
ciated with the place holder display buffer may include coor-
dinates of the place holder display bufter. The protected pro-
cess may include a process related to an online financial
transaction. The place holder display buffer may be open to
the operating system and the isolated display buffer may be

10

15

20

25

30

35

40

45

50

55

60

65

20

isolated from the operating system. The graphics memory
space may include a memory mapped input/output (MMIO)
memory space. Malware may access the place holder display
buffer but not the isolated display buffer. The trusted memory
service layer may include a virtual machine extension root
mode component. The virtual sprite device may be a regis-
tered program having access to the isolated display buffer and
the access controlled graphics memory region. The trusted
memory service layer may be implemented via the one or
more processors, the virtual sprite device may be imple-
mented via the sprite engine, the process address space may
be implemented via the one or more memory stores, the
graphics memory space may be implemented via the one or
more memory stores, the windows manager may be imple-
mented via the one or more processors, the graphics transla-
tion table may be implemented via a graphics driver, and the
graphics driver may be implemented via at least one of the one
or more processors or the one or more graphics processors

In a further example, at least one machine readable
medium may include a plurality of instructions that in
response to being executed on a computing device, causes the
computing device to perform the method according to any
one of the above examples.

In a still further example, an apparatus may include means
for performing the methods according to any one of the above
examples.

The above examples may include specific combination of
features. However, such the above examples are not limited in
this regard and, in various implementations, the above
examples may include the undertaking only a subset of such
features, undertaking a different order of such features,
undertaking a different combination of such features, and/or
undertaking additional features than those features explicitly
listed. For example, all features described with respect to the
example methods may be implemented with respect to the
example apparatus, the example systems, and/or the example
articles, and vice versa.

What is claimed:
1. A computer-implemented method for securing display
output data, the method comprising:

registering a process as a protected process via a trusted
memory service layer;

marking a first portion of a process address space as an
isolated display buffer associated with the protected pro-
cess and a second portion of the process address space as
a place holder display buffer associated with the pro-
tected process;

marking a portion of a graphics memory space as an access
controlled graphics memory region;

providing a virtual sprite device and an associated virtual
sprite memory region;

invoking, in response to a reception of sensitive data into
the isolated display buffer, an application programming
interface via a windows manager to receive information
associated with the place holder display buffer associ-
ated with the protected process;

transferring the sensitive data in the isolated display buffer
to the virtual sprite device memory region;

transferring the sensitive data in the virtual sprite device
memory region to the access controlled graphics
memory region; and

providing the sensitive data in the access controlled graph-
ics memory region to a display device,

wherein the isolated display buffer is isolated from the
operating system via a secure sprite pipeline to protect
from potential malware access,

US 9,158,942 B2

21

wherein the sensitive data is visually presented on the
display device via a virtual sprite that overlays and emu-
lates part of an underlying frame buffer data field such
that a user is presented with little change in the appear-
ance of the information displayed on the display device,

wherein the place holder display buffer is open to the
operating system, and

wherein fake and/or non-sensitive data corresponding to
the sensitive data is associated with the place holder
display buffer so as to be open to the operating system
and potentially susceptible to malware access.

2. The method of claim 1, further comprising:

creating, via the trusted memory service layer, an isolated
display buffer trusted memory view, wherein the iso-
lated display buffer trusted memory view allows access
to the isolated display buffer only via a registered pro-
gram, and wherein the virtual sprite device is a registered
program.

3. The method of claim 1, further comprising:

creating, via the trusted memory service layer, an access
controlled graphics memory region trusted memory
view, wherein the access controlled graphics memory
region trusted memory view allows access to the access
controlled graphics memory region only via a registered
program, and wherein the virtual sprite device is a reg-
istered program.

4. The method of claim 1, further comprising:

loading the trusted memory service layer;

exposing, via the trusted memory service layer, an unveri-
fied virtual sprite device;

loading, via the operating system, an unverified virtual
sprite device driver associated with the unverified virtual
sprite device;

determining, via the trusted memory service layer, whether
the unverified virtual sprite device driver is included on
a provisioned whitelist; and

if the unverified virtual sprite device driver is included on
the provisioned whitelist, registering, via the trusted
memory service layer, the unverified virtual sprite
device as the virtual sprite device.

5. The method of claim 1, further comprising:

loading the trusted memory service layer;

exposing, via the trusted memory service layer, an unveri-
fied virtual sprite device;

loading, via the operating system, an unverified virtual
sprite device driver associated with the unverified virtual
sprite device;

determining, via the trusted memory service layer, whether
the unverified virtual sprite device driver is included on
a provisioned whitelist; and

if the unverified virtual sprite device driver is included on
the provisioned whitelist, registering, via the trusted
memory service layer, the unverified virtual sprite
device as the virtual sprite device, wherein the trusted
memory service layer is loaded and the unverified virtual
sprite device is exposed prior to the operating system
enumerating Peripheral Component Interconnect
Express devices.

6. The method of claim 1, further comprising:

selectively triggering usage of the isolated display buffer
based at least in part on one of identification of data
coming from the protected process being associated
with a hardware protected environment or the protected
process registering for protection with the trusted
memory service layer.

10

15

20

25

30

35

40

45

50

55

60

65

22

7. The method of claim 1, further comprising:

implementing the sprite device via a sprite engine of a
graphics processor and implementing the trusted
memory service layer via a central processing unit.

8. The method of claim 1, wherein marking the portion of
the graphics memory space as the access controlled graphics
memory region comprises accessing a graphics translation
table via a graphics translation table physical memory view
implemented via the trusted memory service layer, wherein
the graphics translation table is configured to translate virtual
graphics memory addresses to physical graphics memory
addresses.

9. The method of claim 1, wherein marking the portion of
the graphics memory space as the access controlled graphics
memory region comprises accessing a graphics translation
table via a graphics translation table physical memory view
implemented via the trusted memory service layer, wherein
the graphics translation table is configured to translate virtual
graphics memory addresses to physical graphics memory
addresses, and further comprising:

disabling a blitter engine and enabling monitoring of the

graphics translation table, via the operating system.

10. The method of claim 1, wherein the information asso-
ciated with the place holder display buffer comprises coordi-
nates of the place holder display buffer.

11. The method of claim 1, wherein the protected process
comprises a process related to an online financial transaction.

12. The method of claim 1, wherein the graphics memory
space comprises a memory mapped input/output (MMIO)
memory space.

13. The method of claim 1, further comprising:

loading the trusted memory service layer;

exposing, via the trusted memory service layer, an unveri-

fied virtual sprite device;

loading, via an operating system, an unverified virtual

sprite device driver associated with the unverified virtual
sprite device;
determining, via the trusted memory service layer, whether
the unverified virtual sprite device driver is included on
a provisioned whitelist;

if the unverified virtual sprite device driver is included on
the provisioned whitelist, registering, via the trusted
memory service layer, the unverified virtual sprite
device as the virtual sprite device;

creating, via the trusted memory service layer, an isolated

display buffer trusted memory view, wherein the iso-
lated display buffer trusted memory view allows access
to the isolated display buffer only via a registered pro-
gram, and wherein the virtual sprite device is a registered
program;

creating, via the trusted memory service layer, an access

controlled graphics memory region trusted memory
view, wherein the access controlled graphics memory
region trusted memory view allows access to the access
controlled graphics memory region only via a registered
program, and wherein the virtual sprite device is a reg-
istered program;

receiving the sensitive data into the isolated display bufter;

selectively triggering usage of the isolated display buffer

based at least in part on one of identification of data
coming from the protected process being associated
with a hardware protected environment or the protected
process registering for protection with the trusted
memory service layer;

disabling a blitter engine and enabling monitoring of the

graphics translation table, via the operating system;

US 9,158,942 B2

23

implementing the virtual sprite device via a sprite engine of
a graphics processor and implementing the trusted
memory service layer via a central processing unit; and

wherein marking the portion of the graphics memory space
as the access controlled graphics memory region com-
prises accessing a graphics translation table via a graph-
ics translation table physical memory view implemented
via the trusted memory service layer, and wherein the
graphics translation table is configured to translate vir-
tual graphics memory addresses to physical graphics
memory addresses,

wherein the virtual sprite device is a registered program
having access to the isolated display buffer and the
access controlled graphics memory region,

wherein the trusted memory service layer is loaded and the
unverified virtual sprite device is exposed prior to the
operating system enumerating Peripheral Component
Interconnect Express devices,

wherein the trusted memory service layer is loaded after
the operating system enumerating Peripheral Compo-
nent Interconnect Express devices, and wherein expos-
ing the unverified virtual sprite device comprises expos-
ing the unverified virtual sprite device as a hot-plug
device to invoke an operating system device manager to
rescan a Peripheral Component Interconnect Express
bus,

wherein the information associated with the place holder
display buffer comprises coordinates of the place holder
display buffer,

wherein the protected process comprises a process related
to an online financial transaction,

wherein the graphics memory space comprises a memory
mapped input/output (MMIO) memory space, and

wherein the trusted memory service layer comprises a vir-
tual machine extension root mode component.

14. A system for securing display output data on a com-

puter, comprising:

a display device configured to display data;

one or more processors communicatively coupled to the
display device;

one or more memory stores communicatively coupled to
the one or more processors;

a process address space;

a windows manager; and

a sprite pipeline comprising a trusted memory service
layer, a virtual sprite device and an associated virtual
sprite memory region, the sprite pipeline configured to:

register a process as a protected process via the trusted
memory service layer;

mark a first portion of the process address space as an
isolated display bufter associated with the protected pro-
cess, and a second portion of the process address space
as a place holder display buffer associated with the pro-
tected process;

mark a portion of a graphics memory space as an access
controlled graphics memory region;

receive sensitive data in the isolated display buffer;

invoke, in response to receiving the sensitive data into the
isolated display buffer, an application programming
interface via a windows manager to receive information
associated with the place holder display buffer associ-
ated with the protected process;

transfer the sensitive data in the isolated display buffer to
the virtual sprite device memory region;

transfer the sensitive data in the virtual sprite device
memory region to the access controlled graphics
memory region; and

10

15

20

25

30

35

40

45

50

55

60

65

24

provide the sensitive data in the access controlled graphics
memory region to the display device,

wherein the isolated display buffer is isolated from the
operating system via a secure sprite pipeline to protect
from potential malware access;

wherein the sensitive data is visually presented on the
display device via a virtual sprite that overlays and emu-
lates part of an underlying frame buffer data field such
that a user is presented with little change in the appear-
ance of the information displayed on the display device,

wherein the place holder display buffer is open to the
operating system, and

wherein fake and/or non-sensitive data corresponding to
the sensitive data is associated with the place holder
display buffer so as to be open to the operating system
and potentially susceptible to malware access.

15. The system of claim 14, further comprising:

an operating system implemented via the one or more
processors,

wherein the sprite pipeline is further configured to:

expose, via the trusted memory service layer, an unverified
virtual sprite device;

determine, via the trusted memory service layer, whether
an unverified virtual sprite device driver is included on a
provisioned whitelist,

if the unverified virtual sprite device driver is included on
the provisioned whitelist, register, via the trusted
memory service layer, the unverified virtual sprite
device as the virtual sprite device, and

wherein the operating system is configured to:

load the trusted memory service layer;

load the unverified virtual sprite device driver associated
with the unverified virtual sprite device.

16. The system of claim 14, further comprising:

an operating system implemented via the one or more
processors,

wherein the sprite pipeline is further configured to:

expose, via the trusted memory service layer, an unverified
virtual sprite device;

determine, via the trusted memory service layer, whether
an unverified virtual sprite device driver is included on a
provisioned whitelist;

if the unverified virtual sprite device driver is included on
the provisioned whitelist, register, via the trusted
memory service layer, the unverified virtual sprite
device as the virtual sprite device, and

wherein the operating system is configured to:

load the trusted memory service layer;

load the unverified virtual sprite device driver associated
with the unverified virtual sprite device; and

enumerate Peripheral Component Interconnect Express
devices, wherein the trusted memory service layer is
loaded and the unverified virtual sprite device is exposed
prior to the operating system enumerating Peripheral
Component Interconnect Express devices and wherein
the unverified virtual sprite device is exposed as a hot-
plug device to invoke an operating system device man-
ager to rescan a Peripheral Component Interconnect
Express bus.

17. The system of claim 14, wherein the sprite pipeline is

further configured to:

create, via the trusted memory service layer, an isolated
display buffer trusted memory view, wherein the iso-
lated display buffer trusted memory view allows access
to the isolated display buffer only via a registered pro-
gram, and wherein the virtual sprite device is a registered
program.

US 9,158,942 B2

25

18. The system of claim 14, wherein the sprite pipeline is
further configured to:

create, via the trusted memory service layer, an access

controlled graphics memory region trusted memory
view, wherein the access controlled graphics memory
region trusted memory view allows access to the access
controlled graphics memory region only via a registered
program, and wherein the virtual sprite device is a reg-
istered program.

19. The system of claim 14, wherein the sprite pipeline is
configured to mark the portion of the graphics memory space
as the access controlled graphics memory region by accessing
a graphics translation table via a graphics translation table
physical memory view implemented via the trusted memory
service layer, and wherein the graphics translation table is
configured to translate virtual graphics memory addresses to
physical graphics memory addresses.

20. The system of claim 14, wherein the information asso-
ciated with the place holder display buffer comprises coordi-
nates of the place holder display butfer.

21. The system of claim 14, wherein the protected process
comprises a process related to an online financial transaction.

22. The system of claim 14, wherein the graphics memory
space comprises a memory mapped input/output (MMIO)
memory space.

23. The system of claim 14, wherein the trusted memory
service layer is implemented via the one or more processors,
the virtual sprite device is implemented via the sprite engine,
the process address space is implemented via the one or more
memory stores, the graphics memory space is implemented
via the one or more memory stores, the windows manager is
implemented via the one or more processors, the graphics
translation table is implemented via a graphics driver, and the
graphics driver is implemented via at least one of the one or
more processors or the one or more graphics processors.

24. The system of claim 14, further comprising

one or more graphics processors communicatively coupled

to the one or more processors, the one or more graphics
processors comprising a sprite engine;

an operating system implemented via the one or more

processors,

wherein the sprite pipeline is further configured to:

expose, via the trusted memory service layer, an unverified

virtual sprite device;

determine, via the trusted memory service layer, whether

anunverified virtual sprite device driver is included on a
provisioned whitelist;

if the unverified virtual sprite device driver is included on

the provisioned whitelist, register, via the trusted
memory service layer, the unverified virtual sprite
device as the virtual sprite device;

create, via the trusted memory service layer, an isolated

display buffer trusted memory view, wherein the iso-
lated display buffer trusted memory view allows access
to the isolated display buffer only via a registered pro-
gram, and wherein the virtual sprite device is a registered
program;

create, via the trusted memory service layer, an access

controlled graphics memory region trusted memory
view, wherein the access controlled graphics memory
region trusted memory view allows access to the access
controlled graphics memory region only via a registered
program, and wherein the virtual sprite device is a reg-
istered program;

receive the sensitive data into the isolated display buffer;

and

10

15

20

25

30

40

45

26

selectively trigger usage of the isolated display buffer
based at least in part on one of identification of data
coming from the protected process being associated
with a hardware protected environment or the protected
process registering for protection with the trusted
memory service layer,

wherein the operating system is configured to:

load the trusted memory service layer;

load the unverified virtual sprite device driver associated
with the unverified virtual sprite device;

disable a blitter engine and enable monitoring of the graph-
ics translation table;

enumerate Peripheral Component Interconnect Express
devices, wherein the trusted memory service layer is
loaded and the unverified virtual sprite device is exposed
prior to the operating system enumerating Peripheral
Component Interconnect Express devices and wherein
the unverified virtual sprite device is exposed as a hot-
plug device to invoke an operating system device man-
ager to rescan a Peripheral Component Interconnect
Express bus,

wherein the sprite pipeline is configured to mark the por-
tion of the graphics memory space as the access con-
trolled graphics memory region by accessing a graphics
translation table via a graphics translation table physical
memory view implemented via the trusted memory ser-
vice layer, and wherein the graphics translation table is
configured to translate virtual graphics memory
addresses to physical graphics memory addresses,

wherein the information associated with the place holder
display buffer comprises coordinates of the place holder
display buffer,

wherein the protected process comprises a process related
to an online financial transaction,

wherein the graphics memory space comprises a memory
mapped input/output (MMIO) memory space,

wherein the trusted memory service layer comprises a vir-
tual machine extension root mode component,

wherein the virtual sprite device is a registered program
having access to the isolated display buffer and the
access controlled graphics memory region, and

wherein the trusted memory service layer is implemented
via the one or more processors, the virtual sprite device
is implemented via the sprite engine, the process address
space is implemented via the one or more memory
stores, the graphics memory space is implemented via
the one or more memory stores, the windows manager is
implemented via the one or more processors, the graph-
ics translation table is implemented via a graphics driver,
and the graphics driver is implemented via at least one of
the one or more processors or the one or more graphics
processors.

25. At least one non-transitory machine-readable medium

comprising a plurality of instructions that in response to being

55 executed on a computing device, cause the computing device

60

65

to secure display output data by:

registering a process as a protected process via a trusted
memory service layer;

marking a first portion of a process address space as an
isolated display buffer associated with the protected pro-
cess and a second portion of the process address space as
a place holder display buffer associated with the pro-
tected process;

marking a portion of a graphics memory space as an access
controlled graphics memory region;

providing a virtual sprite device and an associated virtual
sprite memory region;

US 9,158,942 B2

27

invoking, in response to a reception of sensitive data into
the isolated display buffer associated with a protected
process registered via a trusted memory service layer, an
application programming interface to receive informa-
tion from the place holder display buffer associated with
the protected process;

transferring the sensitive data in the isolated display buffer

to a virtual sprite device memory region via a virtual
sprite device;

transferring the sensitive data in the virtual sprite device

memory regionto an access controlled graphics memory
region for display via a display device; and

providing the sensitive data in the access controlled graph-

ics memory region to a display device,

wherein the isolated display buffer is isolated from the

operating system via a secure sprite pipeline to protect
from potential malware access;
wherein the sensitive data is visually presented on the
display device via a virtual sprite that overlays and emu-
lates part of an underlying frame buffer data field such
that a user is presented with little change in the appear-
ance of the information displayed on the display device,

wherein the place holder display buffer is open to the
operating system, and

wherein fake and/or non-sensitive data corresponding to

the sensitive data is associated with the place holder
display buffer so as to be open to the operating system
and potentially susceptible to malware access.

26. The non-transitory machine readable medium of claim
25, further comprising instructions that in response to being
executed on the computing device, cause the computing
device to securely display output data by:

loading the trusted memory service layer;

exposing, via the trusted memory service layer, an unveri-

fied virtual sprite device;

loading, via an operating system, an unverified virtual

sprite device driver associated with the unverified virtual
sprite device;
determining, via the trusted memory service layer, whether
the unverified virtual sprite device driver is included on
a provisioned whitelist;

if the unverified virtual sprite device driver is included on
the provisioned whitelist, registering, via the trusted
memory service layer, the unverified virtual sprite
device as the virtual sprite device;

creating, via the trusted memory service layer, an isolated

display buffer trusted memory view, wherein the iso-
lated display buffer trusted memory view allows access
to the isolated display buffer only via a registered pro-
gram, and wherein the virtual sprite device is a registered
program;

10

15

20

25

30

35

40

45

50

28

creating, via the trusted memory service layer, an access
controlled graphics memory region trusted memory
view, wherein the access controlled graphics memory
region trusted memory view allows access to the access
controlled graphics memory region only via a registered
program, and wherein the virtual sprite device is a reg-
istered program;

receiving the sensitive data into the isolated display bufter;

selectively triggering usage of the isolated display buffer
based at least in part on one of identification of data
coming from the protected process being associated
with a hardware protected environment or the protected
process registering for protection with the trusted
memory service layer;

disabling a blitter engine and enabling monitoring of the
graphics translation table, via the operating system;

implementing the virtual sprite device via a sprite engine of
a graphics processor and implementing the trusted
memory service layer via a central processing unit; and

wherein marking the portion of the graphics memory space
as the access controlled graphics memory region com-
prises accessing a graphics translation table via a graph-
ics translation table physical memory view implemented
via the trusted memory service layer, and wherein the
graphics translation table is configured to translate vir-
tual graphics memory addresses to physical graphics
memory addresses,

wherein the virtual sprite device is a registered program
having access to the isolated display buffer and the
access controlled graphics memory region,

wherein the trusted memory service layer is loaded and the
unverified virtual sprite device is exposed prior to the
operating system enumerating Peripheral Component
Interconnect Express devices,

wherein the trusted memory service layer is loaded after
the operating system enumerating Peripheral Compo-
nent Interconnect Express devices, and wherein expos-
ing the unverified virtual sprite device comprises expos-
ing the unverified virtual sprite device as a hot-plug
device to invoke an operating system device manager to
rescan a Peripheral Component Interconnect Express
bus, wherein the information associated with the place
holder display buffer comprises coordinates of the place
holder display buffer,

wherein the protected process comprises a process related
to an online financial transaction,

wherein the graphics memory space comprises a memory
mapped input/output (MMIO) memory space, and

wherein the trusted memory service layer comprises a vir-
tual machine extension root mode component.

#* #* #* #* #*

